Experiencing the Engineering Design Process through a Math Lens NCTM San Francisco, 2016

Heather Kohn, @heather_kohn Marlborough High School, MA heather.m.kohn@gmail.com growingexponentially.wordpress.com

EDP	Questions to Consider	Barbie Bungee
Step 1: Identify the Problem	What problem are you trying to solve? What are you being asked to find? What are the constraints?	
Step 2: Research	What do you already know about this problem? What do you need to know to solve this problem?	
Step 3: Develop Possible Solutions	What ideas do you have? How does your research support these solutions? What materials will you need?	
Step 4: Select the Best Solution	What is the best solution? Why? What materials will you need?	
Step 5: Construct a Prototype	What is the procedure for building the prototype? What materials do you actually use?	
Step 6: Test and Evaluate	What data are you going to collect? What happened? How did the prototype perform? Do your results make sense?	
Step 7: Communicate the Solution	How will you share your results?	
Step 8: Redesign	How could you improve your solution?	

Engineering Design Plan (aka the "other" EDP) Catapult Launchers

Read the "Questions to Consider" on the front page when thinking about what to write in your engineering design plan

Step 1: Identify the Problem

Design a catapult that accurately launches an M&M so it hits the target

Constraints:

Step 2: Research

Step 3: Develop Possible Solutions

• Sketch:

o Materials Needed:

Step 5: Construct a Prototype

Step 6: Test and Evaluate

a) Put your catapult on the floor. Practice launching the M&M a few times, then record the distance (meters) and time (sec) for 3 trials in a t-chart. Calculate the average distance and average time.

b) Determine the average fall time of your M&M:

c) An object's freefall can be determined by the equation, $\Box = \frac{1}{2}\Box \Box^2$, where *d* is the vertical distance traveled in meters, *g* is the effect of gravity (9.8 meters/s²), and *t* is the average fall time (sec). The y-value of your vertex is *d*. Find *d*.

Step 6	Contin	ued:
--------	--------	------

d) The x-value of your vertex can be found by dividing the average horizontal distance by 2:

e) Write a quadratic equation in vertex form to model the flight path of your M&M.

f) New challenge: Launch your M&M onto the floor, while the catapult is on the table. How does this effect your equation? Where would you expect your M&M to land now? Where should you place the target? Try it!

Step 7: Communicate the Solution

Step 8: Redesign

The calculations in Step 6 were inspired by this blog post (see post for student-friendly version with more scaffolding): Sweeney, Sean. (2009, Sept 1). M&M Catapult project pt. 2- The project [web blog post]. Retrieved from http://sweeneymath.blogspot.com/2009/09/m-catapult-project-pt-2-project.html